על מנת לגזור את הפונקציה הנתונה, עלינו להשתמש בשני כללי גזירה בסיסיים - נגזרת של שורש ונגזרת של מנה. כזכור, נגזרת של שורש מקיימת:
y=\sqrt{f(x)} \Rightarrow y'= \frac{1}{2\sqrt{f(x)}}\cdot f'(x)
ואילו, נגזרת של מנה מקיימת:
y(x)=\frac{f(x)}{g(x)} \Rightarrow y'= \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x))}{(g(x))^2}
לכן, נגזור את הפונקציה הנתונה בעזרת שני הכללים הנ"ל:
y'=\frac{\frac{2x}{2\cdot \sqrt{x^2-1}} \cdot x -\sqrt{x^2-1}\cdot 1}{x^2}=\frac{x^2-(x^2-1)}{x^2\sqrt{x^2-1}}= \frac{1}{x^2 \sqrt{x^2-1}}
מקווה שמובן, בהצלחה